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Abstract

Lyme disease is the most commonly reported vector-borne disease in the United States (US), 

with approximately 300,000 -to- 40,000 cases reported annually. The blacklegged tick, Ixodes 
scapularis, is the primary vector of the Lyme disease-causing spirochete, Borrelia burgdorferi 
sensu stricto, in high incidence regions in the upper midwestern and northeastern US. Using 

county-level records of the presence of I. scapularis or presence of B. burgdorferi s.s. infected 

host-seeking I. scapularis, we generated habitat suitability consensus maps based on an ensemble 

of statistical models for both acarological risk metrics. Overall accuracy of these suitability models 

was high (AUC = 0.76 for I. scapularis and 0.86 for B. burgdorferi s.s. infected-I. scapularis). 

We sought to compare which acarological risk metric best described the distribution of counties 

reporting high Lyme disease incidence (≥10 confirmed cases/100,000 population) by setting the 

models to a fixed omission rate (10%). We compared the percent of high incidence counties 

correctly classified by the two models. The I. scapularis consensus map correctly classified 53% 

of high and low incidence counties, while the B. burgdorferi s.s. infected-I. scapularis consensus 

map classified 83% correctly. Counties classified as suitable by the B. burgdorferi s.s. map showed 

a 91% overlap with high Lyme disease incidence counties with over a 38-fold difference in 

Lyme disease incidence between high- and low-suitability counties. A total of 288 counties were 

classified as highly suitable for B. burgdorferi s.s., but lacked records of infected-I. scapularis and 
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were not classified as high incidence. These counties were considered to represent a leading edge 

for B. burgdorferi s.s. infection in ticks and humans. They clustered in Illinois, Indiana, Michigan, 

and Ohio. This information can aid in targeting tick surveillance and prevention education efforts 

in counties where Lyme disease risk may increase in the future.

1. Introduction

Lyme disease is the most commonly reported vector-borne disease in the United States (US), 

with approximately 30,000 -to- 40,000 estimated cases occurring annually (Schwartz et al., 

2017). The number of counties considered high incidence for Lyme disease has expanded 

over time (Kugeler et al., 2015), and case numbers have increased most rapidly in counties 

where Lyme disease has recently been established (Burtis et al., 2016). The increase in cases 

and geographic expansion of Lyme disease in recent decades is driven in part by the range 

expansion of Ixodes scapularis, the primary vector of Borrelia burgdorferi sensu stricto in 

the eastern US (the primary causative agent of Lyme disease, referred to as B. burgdorferi 
hereafter) (Eisen et al., 2016).

The majority of high-incidence counties are in the upper midwestern and northeastern states, 

but suitable habitat for I. scapularis has been predicted to cover much of the eastern US 

(Hahn et al., 2016, 2017; Peterson and Raghavan, 2017), including counties in the southeast 

where Lyme disease incidence is low (Schwartz et al., 2017). Previous studies suggest that 

the density of host-seeking B. burgdorferi-infected nymphs (DIN) is a better predictor of 

Lyme disease case occurrence than vector presence or abundance data alone (Eisen and 

Eisen, 2016). Estimation of DIN requires that both tick density and pathogen infection 

prevalence are collected. The Centers for Disease Control and Prevention (CDC) guidance 

suggests a minimum of 750 m of dragging distance to estimate density, and at least 25 ticks 

be tested for infection prevalence estimates (CDC, 2018). As a result, such estimates are 

costly. Due to a lack of systematic tick-based surveillance efforts and the cost of generating 

such data, DIN estimates are lacking for most counties in the US.

In 2018 CDC initiated a national tick-based surveillance program (CDC, 2018; Eisen and 

Paddock, 2021) to provide current and accurate information to the public, clinicians, and 

policy makers regarding the distribution and abundance of medically important ticks and 

the distribution and prevalence of their associated human pathogens. Data generated by 

this program, coupled with a review of historical data in the peer-reviewed literature, 

yielded recent county-scale updates for the geographic distribution of I. scapularis and 

B. burgdorferi in the US (Eisen et al., 2016; Fleshman et al., 2021, 2022). The reported 

county-level distribution of host-seeking I. scapularis infected with B. burgdorferi is more 

constrained than the distribution of I. scapularis (Fleshman et al., 2021, 2022). However, 

the lack of systematic sampling and tick testing efforts across the US results in an under-

representation of the actual distribution of infected ticks. Habitat suitability models can 

aid in efforts to identify the range of vectors and their associated pathogens, which may 

be under-represented by current tick-based surveillance practices. While predictions based 

upon habitat suitability models are reliant upon the extent of the underlying dataset, these 

models may be helpful in identifying locations with suitable habitat that lack surveillance 
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data. Habitat suitability models have been used in other biological systems to focus sampling 

efforts for both rare and invasive species (Crall et al., 2013; Aizpurua et al., 2015) and may 

help to focus tick collection and testing efforts in the eastern US.

In this study, we developed separate habitat suitability maps to estimate the predicted 

suitable range of counties where I. scapularis is likely to be established and where B. 
burgdorferi-infected host-seeking I. scapularis are likely to occur. We then used the resulting 

models to assess which acarological risk metric best predicts the distribution of counties 

considered to be high incidence for Lyme disease. Next, we projected the acarological risk 

models to identify potential ‘leading edge’ counties where infected I. scapularis populations 

may be expanding and Lyme disease cases may be increasing. This information will be 

useful in determining the geographic extent of suitable habitat for B. burgdorferi-infected I. 
scapularis. It will also aid in identifying counties in the eastern US where tick surveillance 

efforts should be focused and where acarological risk is likely to increase in the future.

2. Methods

2.1. Field data for acarological risk metrics

County level datasets were generated for two different acarological risk metrics. The first 

included observed presence of I. scapularis of any life stage and the second included 

observations of B. burgdorferi-infected host-seeking I. scapularis. These will be referred to 

as “I. scapularis” or “B. burgdorferi“ models hereafter, respectively.

For the I. scapularis dataset, observations were derived from a combination of published 

data for the distribution of I. scapularis reported by Eisen et al. (2016) and data submitted 

to the ArboNET Tick Module through 2020. The ArboNET Tick Module is a data portal 

maintained by CDC that allows public health agencies to report surveillance data on the 

presence and abundance of medically important ticks and the presence and prevalence of 

their associated human pathogens in ticks. In previous studies (Dennis et al., 1998; Eisen 

et al., 2016) counties were classified as ‘established’ if six or more ticks, or more than 

one life stage were collected in a single year; counties were classified as ‘reported’ if 

these thresholds were not reached, but at least one tick of any life stage was detected. The 

‘reported’ counties were not included to reduce the potential for false positives in counties 

lacking an established population, potentially representing counties where individual I. 
scapularis were transported long distances by hosts (Schneider et al., 2015; Scott, 2016). 

This also allowed for direct comparisons against previous I. scapularis modeling efforts by 

Hahn et al. (2016, 2017). Counties where no I. scapularis were collected were classified as 

‘no records.’ In our analysis, ‘established’ counties were coded as “established’ (1), while 

‘reported’ and ‘no records’ counties were coded as ‘not established’ (0). A total of 1001 

counties were coded as ‘established’, predominantly in the Northeast, Upper Midwest and 

along the Atlantic coast.

Observations of B. burgdorferi-infected I. scapularis were derived from a combination of 

published historical data from the literature and ArboNET Tick Module data through the end 

of 2020. Testing methods conformed to CDC tick surveillance guidance (CDC, 2018) and 

the majority of ticks submitted to CDC were tested using a series of real-time polymerase 
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chain reaction assays described in Graham et al. (2018). The geographic distribution of 

these data were published previously (Fleshman et al., 2021). Counties where one or more 

host-seeking B. burgdorferi-infected I. scapularis was collected were coded as ‘present’ 

(1), while counties without record of infection were coded as ‘no records’ (0). For B. 
burgdorferi presence, we required only a single infected tick to be detected, rather than the 

six required for I. scapularis establishment, due to the additional sampling effort required to 

collect infection data; increasing the number of ticks required to be infected would penalize 

counties with low prevalence or low tick abundance. A total of 402 counties were coded as 

‘present’, predominantly in the Northeast and Upper Midwest.

2.2. Human Lyme disease incidence data

Confirmed cases of Lyme disease voluntarily reported to CDC from state and local health 

departments via the National Notifiable Diseases Surveillance System (NNDSS) between 

2000 and 2019 were collated by county of residence across the eastern US (CDC, 2021a). 

The surveillance case definition for confirmed Lyme disease was modified during this 

20-year period. Between 2000 and 2007 cases were considered confirmed if either erythema 

migrans (EM) rash was present, or specific late manifestations affecting the musculoskeletal, 

nervous, or cardiovascular systems were present and associated with positive serological 

laboratory evidence. Beginning in 2008, laboratory criteria were modified to increase 

specificity (CSTE, 2007). Acceptable laboratory evidence included: (1) a positive culture 

for B. burgdorferi, (2) two-tier testing interpreted using established criteria, or (3) single-tier 

IgG immunoblot seropositivity interpreted using established criteria. Beginning in 2017, 

laboratory evidence of infection was required for all cases from low-incidence states, 

including for those associated with EM rash (CDC, 2021b). The annual incidence per 

100,000 persons between 2000 and 2019 was calculated using the 2010 census county 

population estimates (US Census, 2021). The national Lyme disease case data we used are 

reliant upon the ability of each state to report data to CDC, which can vary between years. 

Overall, under-reporting is more likely in high-incidence areas, while over-reporting is more 

likely in areas where incidence is low (CDC, 2021a). To account for this, counties were 

considered ‘high-incidence’ if there were ≥10 confirmed cases per 100, 000 persons for 

three or more consecutive years between 2000 and 2019. Our definition focuses on counties 

consistently reporting high incidence of Lyme disease, rather than single year reports of pure 

incidence values or cumulative incidence over the entire observation period. This was done 

to ensure capture of counties where high-risk Lyme disease emerged more recently (Kugeler 

et al., 2015), and to minimize potential of travel-associated cases to lead to misclassification 

of county status (Forrester et al., 2015).

2.3. Climate and landscape predictors

We selected a variety of climate and landscape predictors to construct our habitat suitability 

models based upon the ecology of I. scapularis and potential to affect B. burgdorferi 
transmission dynamics. We included 19 climate predictors from WorldClim, which are 

commonly used for bioclimatic modeling (Hijmans et al., 2005). The original dataset uses 

weather observations between 1950 and 2000 to generate climate layers at a 1 km × 1 

km spatial resolution. We updated these climate layers using Daymet data (Thornton et 

al., 1997, 2016) with records collected between 1980–2015 as previously described in 
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Johnson et al. (2017). Three additional climate variables were also evaluated. Average 

monthly growing degree days above 10 °C (GDD10) between December and February 

was included as a measure of sustained cold weather that might affect development of 

overwintering I. scapularis (Ogden et al., 2004). Vapor pressure between March and June 

was included as a measure of water vapor in the air during a period when I. scapularis 
nymphs likely experience high mortality rates (Burtis et al., 2019). Finally, snow water 

equivalent between November and April was included as a measure of snowfall over the 

winter which may insulate overwintering ticks (Linske et al., 2019). We also evaluated 

two landscape predictors, percent forest cover based upon the 2006 national land cover 

database (Fry et al., 2011) and elevation based upon global multi-resolution terrain elevation 

data from 2010 (Danielson and Gesch, 2011), both of which are known to be significant 

predictors of I. scapularis presence in regional models (Estrada-Peña, 2002; Diuk--Wasser 

et al., 2010; Hahn et al., 2016). The Zonal Statistics tool was used in QGIS (v. 3.14.1) to 

generate county-level estimates for the eastern US. Minimum, maximum, or mean values 

were used to generate layers for different predictors. This was done to explore the effect 

of temperature and precipitation extremes. Additional details regarding the predictors are 

described in Table 1.

To select predictors, we first sorted them by percent deviance explained, and eliminated 

those that explained <5% of the deviance. Percent deviance is a goodness of fit statistic, 

similar to an r-squared value (Talbert and Talbert, 2001; Guisan et al., 2017). Many climate 

predictors were collinear, so a correlation matrix of all predictors was created prior to 

their use in the models described below. Spearman Rho correlations against both the county-

level acarological data (i.e. observed presence of I. scapularis or B. burgdorferi) and each 

other were generated. Predictors were further sorted in descending order according to their 

spearman Rho correlation scores against the county-level acarological data. If two predictors 

were correlated with one another (> 0.80) the predictor that was most strongly correlated 

with the county-level acarological data was retained while the other was eliminated. This 

same process was repeated for both the I. scapularis and B. burgdorferi datasets.

2.4. Acarological risk modeling

We generated separate models based upon the two datasets (I. scapularis and B. burgdorferi), 
but the same process was followed and presence at the county level was coded as described 

above. The extent of both datasets was limited to states in the eastern US, representing the 

expected range of I. scapularis (Diuk-Wasser et al., 2010; Hahn et al., 2016) (Figs. 1 and 2). 

Five modeling algorithms were used for each of the two acarological outcomes: (1) boosted 

regression tree (BRT), (2) generalized linear model (GLM), (3) maximum entropy (Maxent), 

(4) multivariate adaptive regression splines (MARS), and (5) random forest (RF) (Talbert 

and Talbert, 2001).

BRT is a boosting approach that iteratively fits trees, first generating a sequence of simple 

trees and then creating new trees based upon the residuals of those already created. It 

is a flexible approach that can account for complex relationships between predictor and 

response variables (Elith et al., 2008; Merow et al., 2014). GLM is a generalized ordinary 

least squares regression which links to a binomial function. This approach is suitable when 
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relationships between predictor and response variables are not overly complex (Guisan et 

al., 2017). Maxent is a maximum entropy approach which generates probability distributions 

to match the dataset, with the distribution which maximizes uncertainty (entropy) being 

considered the most suitable. It is highly flexible and particularly well-suited for presence-

only datasets (Elith et al., 2011). MARS represents a more flexible regression which allows 

relationships between predictor and response variables not to conform to a predefined shape. 

This allows for the analysis of complex relationships between predictors and responses 

(Guisan et al., 2017). RF is a bagging or bootstrapping aggregation approach wherein trees 

are fit to different bootstrapped subsamples of the data and the averaged probability across 

all runs is extracted (Breiman, 2001). Each modeling approach has different underlying 

assumptions, which can affect their outcome. Using an ensemble approach can help to 

account for differences in these assumptions and their effect on the model output. The 

models produced probability scores, referred to as suitability scores hereafter, for each 

county. Suitability scores were converted to binary data (high or low suitability) by using 

different probability thresholds, as described in the next section.

We used a 10-fold cross-validation method to generate performance statistics for each 

model. The training data were divided into 10 equal subsets and the models were run 10 

separate times, excluding one subset each time. These are referred to as the ‘testing’ runs 

hereafter, while the model ‘training’ runs use the entire dataset without excluding data 

points. The Receiver Operating Characteristic (ROC) curve and the resulting area under the 

curve (AUC) were assessed for the training and testing runs. The ROC curve is a plot of 

the true positive rate against the false positive rate at different suitability thresholds. The 

AUC, derived from the ROC, is a threshold unbiased measure of model accuracy. A value of 

1 indicates a ‘perfect’ model and values ≤ 0.5 indicate a poor distinction between counties 

classified as high- or low-suitability (Fielding and Bell, 1997). Overfitting was assessed 

by comparing the AUC values for the training and test runs. If AUC values differed by 

>0.05 the model was considered overfit (Springer et al., 2015; Hahn et al., 2016). We also 

checked for large differences in specificity, sensitivity, positive predictive value, negative 

predictive value, percent deviance explained, percent correctly classified, and the correlation 

coefficient between the training and testing runs (Elith et al., 2008). The percent correctly 

classified (PCC) is a measure of overall model accuracy and is calculated:

PCC = True Positive + True Negative
True Positive + True Negative + False Positive + False Nagative

The correlation coefficient represents the overall linear relationship between the field data 

and the model output. The RF and BRT models were overfit and therefore not used in the 

consensus maps described below. All models were generated using the VisTrails Software 

for Assisted Habitat Modeling (SAHM v. 2.2.3) using the default model settings.

2.5. Model thresholding and visualization of consensus maps

Using the output for the modeling algorithms (GLM, MARS, Maxent), we generated 

continuous suitability scores and converted scores to binary outcomes (high or low 

suitability) based on the following thresholding criteria. We dichotomized the model using 
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a threshold suitability score that simultaneously maximized the sum of sensitivity and 

specificity as ascertained using the ROC plots. This is expected to yield the most constrained 

geographic distribution of highly suitable counties when using a presence-only dataset (Liu 

et al., 2013; Hahn et al., 2017). Recognizing we have greater confidence in presence than 

pseudo-absence data, we also dichotomized the models based on fixed omission error (false 

negative) rates (10% and 5%) showing sensitivities of 90 or 95%. Since we have confidence 

in the presence data, we used the false negative rate to standardize error rate against those 

observations rather than the pseudo-absence data (Peterson, 2014).

We overlaid each thresholded binary statistical model to create two separate consensus 

maps of suitability, one for I. scapularis and another for B. burgdorferi. In consensus maps, 

counties that the majority (≥2) of models classified as highly suitable maintained their 

classification. All other counties that one or zero models predicted to be suitable were 

classified as low-suitability. Map performance was evaluated by comparing suitability with 

observed presence of I. scapularis and B. burgdorferi to derive the sensitivity, specificity, 

positive predictive value, negative predictive value, and percent correctly classified. The 

binary model output was combined to create consensus maps using QGIS v. 3.14.1 (QGIS 

Development Team, 2021).

2.6. Comparison of acarological risk models for classifying high incidence Lyme disease 
counties

We sought to determine which acarological risk metric (I. scapularis or B. burgdorferi) better 

described the reported distribution of counties classified as high incidence for Lyme disease. 

We normalized outcomes of individual I. scapularis and B. burgdorferi statistical models 

(GLM, MARS, and Maxent) by thresholding the models at 90% sensitivity. Recognizing 

that tick-based surveillance is not conducted evenly or randomly across the eastern US, we 

fixed the omission rate evenly at 10% for both the I. scapularis and B. burgdorferi consensus 

maps. The two consensus maps were evaluated using three criteria: (1) overall accuracy and 

fit of the models to predict counties classified as high incidence for Lyme disease based 

upon the AUC and Akaike information criterion (AIC), respectively, derived from logistic 

regressions, (2) discrimination in Lyme disease incidence between high- and low-suitability 

counties, and (3) percentage of high-incidence counties correctly classified.

For the logistic regressions, we used the binary output from each of the two consensus 

maps (I. scapularis or B. burgdorferi) as predictors of high-incidence counties, also coded 

as binary (high incidence or not). We conducted two logistic regressions to generate AIC 

values. A difference of ≥2 in the AIC score indicate significant model improvement, 

with the lower value indicating a superior model (Burnham and Anderson, 2004). The 

AUC values were generated using the pROC package in the R statistical environment 

(v. 4.0.3). To determine discrimination between high- and low-incidence counties, we 

subtracted the median Lyme disease incidence in counties classified as low-suitability from 

the median incidence in high-suitability counties. The median Lyme disease incidence was 

also compared between counties classified as high- and low-suitability by both consensus 

maps. The distribution of Lyme disease incidence data was not normal, so Wilcoxon rank 

sum tests were used for these comparisons. The alignment between counties classified as 
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high-suitability by the two consensus maps and high-incidence counties was determined 

by calculating the percentage of counties correctly classified as high- or low-suitability. 

The consensus map based upon the 90% sensitivity models that most accurately classified 

high Lyme disease incidence counties according to the criteria above was expanded to 95% 

sensitivity to identify additional potential ‘leading edge’ counties where acarological risk 

and Lyme disease incidence are predicted to increase. All statistical analyses were conducted 

in the R statistical environment v. 4.0.3 (R Core Team, 2021).

3. Results

3.1. Variable selection and model performance

Using the variable selection method described, we selected six predictors to model 

suitability for I. scapularis and seven to model suitability for B. burgdorferi (Table 3). 

Both the RF and BRT modeling algorithms exhibited overfitting. The BRT models for both 

datasets had differences in AUC > 0.05 between the testing and training models. The RF 

models exhibited low sensitivities (<70%) and differences in sensitivities and specificities 

were >10% between testing and training runs for both datasets. Furthermore, upon visual 

inspection of both the RF and BRT output these models showed strong overfitting 

tendencies, almost entirely predicting presence only in counties where I. scapularis or B. 
burgdorferi had been observed. Adjusting model parameters did not improve the results over 

default settings. Hence, only the GLM, MARS, and Maxent modeling algorithms were used 

to generate the two consensus maps. The full output for the testing and training runs of these 

three models is shown in Table 2. The Maxent modeling algorithm does not have an internal 

variable selection process, so retained all predictors. Predictor variables that do not explain 

a significant amount of variation have low normalized contribution values in the Maxent 

models.

4. Predictor response curves

4.1. I. scapularis model response curves

For the I. scapularis dataset, all six predictors, BIO2, BIO5, BIO18, BIO19, percent 

forest cover, and elevation, were retained by each of the three modeling algorithms (see 

maps in Supplemental Fig. S1). Each predictor exhibited a different relationship with the 

habitat suitability score. The mean diurnal temperature range (BIO2), showed a negative 

relationship with the suitability score for I. scapularis. Lower diurnal ranges had higher 

suitability scores. The maximum temperature during the warmest month (BIO5) showed 

an s-shaped relationship with the suitability score, with the highest suitability scores at 

low temperatures. Amount of precipitation in the warmest quarter (BIO18) showed an 

approximately linear positive relationship. Counties with more summer precipitation had 

higher suitability scores. Precipitation of the coldest quarter (BIO19) showed a negative 

relationship with the lowest values having the highest suitability scores. Percent forest cover 

showed a positive relationship with the suitability score up to approximately 75% forest 

cover above which point the relationship became negative. Elevation showed a negative 

relationship with high elevations being the least suitable (Fig. 3).
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4.2. B. burgdorferi model response curves

For the B. burgdorferi dataset, all predictors were used in each modeling algorithm, with the 

exception of BIO18 which was dropped from the MARS model (see maps in Supplemental 

Fig. S2). Four predictors, BIO5, BIO18, BIO19, and percent forest cover, showed unimodal 

relationships with the suitability score being highest at intermediate values. The mean 

diurnal temperature (BIO2) showed a similar pattern to that of the I. scapularis dataset, 

with the highest suitability scores at temperatures between approximately 14 and 18 °C. 

The effect of isothermality (BIO3) was slightly inconsistent between modeling algorithms. 

The GLM showed a curved increasing relationship with the highest suitability score at 

high isothermality, the MARS model showed a relatively flat relationship, with a slight 

increase in the suitability score as isothermality increases. The Maxent model showed a 

relatively flat relationship with a slight peak in suitability at intermediate isothermality. 

The effect of the mean temperature of the warmest quarter (BIO8) also showed some 

variation between modeling algorithms. The GLM model showed a slight increase in the 

suitability score at intermediate temperatures after which the relationship was flat, while 

the Maxent and MARS models showed the same small increase in the suitability score 

at low temperatures followed by a steep increase at higher temperatures. There was a 

negative relationship between the mean temperature of the driest quarter and suitability 

with the warmest temperature being least suitable (Fig. 3). GLM models can struggle to 

account for complex relationships between response and predictor variable, but the majority 

of predictor relationships are linear, unimodal, or s-shaped and align well with the output 

from the MARS and Maxent models, indicating that the GLM can appropriately model 

these relationships (Guisan et al., 2017). This is the case for both the I. scapularis and B. 
burgdorferi GLM models.

4.3. Consensus map performance based on comparisons with I. scapularis or B. 
burgdorferi presence records

4.3.1. I. Scapularis model performance—There was strong agreement in counties 

predicted to be high-suitability between the three modeling algorithms using the I. scapularis 
dataset. With the sum of sensitivity and specificity maximized, the resulting consensus map 

predicts most counties in the Northeast, Mid-Atlantic, and Upper Midwest to be highly 

suitable. Much of the coastal Southeast is also predicted to be highly suitable, along with 

a portion of the northern Appalachian Mountain range in West Virginia. The predicted 

high-suitability area expands inland in the southeast as model sensitivity is increased and 

specificity is decreased (Fig. 1). The consensus map yielded an overall accuracy (AUC) of 

0.76. The I. scapularis model based upon models with the sum of sensitivity and specificity 

maximized had the highest specificity and percent correctly classified values. The sensitivity 

of the I. scapularis consensus map with the sum of sensitivity and specificity maximized 

was 77%. That is, 77% of counties where I. scapularis was classified as established were 

considered highly suitable by the model. When model sensitivity was increased to 90%, 

specificity was reduced to 54%. In other words, 54% of counties lacking records of I. 
scapularis establishment were classified as low-suitability. Negative predictive values (i.e., 

the model predicted a county to be low-suitability and tick records were lacking for that 

county) were high (>80%) at all sensitivity settings. Positive predictive values (i.e., counties 
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classified as highly suitable where ticks were recorded as established) were overall low, with 

a maximum of 65% (Table 4).

4.4. B. burgdorferi model performance

There was strong agreement between the three modeling algorithms based upon the 

B. burgdorferi dataset, which yielded an overall accuracy (AUC) of 0.86. With the 

sum of sensitivity and specificity maximized, the high-suitability counties predicted 

by this consensus map are constrained primarily to the Northeast, Mid-Atlantic, and 

Upper Midwest. The number of high-suitability counties expanded with increasing model 

sensitivity. In contrast to the I. scapularis model, most of the Southeast was classified as low-

suitability (Fig. 2). The consensus map based upon models with the sum of sensitivity and 

specificity maximized had the highest specificity and percent correctly classified values. The 

sensitivity of the B. burgdorferi consensus map with the sum of sensitivity and specificity 

maximized was 91%, so the effect of increasing model sensitivity to 90% was limited 

only increasing specificity by 0.3%. Negative predictive values were high (>97%) at all 

sensitivity settings. That is, more than 97% of counties classified as low-suitability lacked 

records of infected ticks. Positive predictive values were overall low, with a maximum 

of 45.7% of counties classified as highly suitable for B. burgdorferi also having records 

of I. scapularis-infected with B. burgdorferi. The low positive predictive values observed 

with both the B. burgdorferi and I. scapularis consensus models are consistent with 

under-reporting, which may have resulted from inconsistent geographic coverage of the 

surveillance program, range expansion, or a combination of both. Overall, the percentage of 

correctly classified counties was higher for the B. burgdorferi consensus map than that for I. 
scapularis (Table 4).

4.5. Relationship between consensus maps and Lyme disease incidence

4.5.1. I. Scapularis consensus map and Lyme disease incidence—The AIC 

value of the logistic regression comparing the binary output from the I. scapularis consensus 

map with models set to 90% sensitivity against high-incidence counties was 2958 and the 

AUC value was 0.72. The median Lyme disease incidence in high-suitability counties by this 

consensus map [0.67 cases per 100,000 persons (IQR: 0.15–6.20)] was significantly higher 

than incidence in low-suitability counties [0.06 cases per 100,000 persons (IQR: 0.00–0.39) 

(z = −21.47, p < 0.001) (Table 5). The overall percentage of high- and low-incidence 

counties correctly classified by the I. scapularis map was 53.4%. The sensitivity was 99.3%, 

specificity was 44.5%, positive predictive value was 25.7%, and negative predictive value 

was 99.7% (Table 6). Many counties in the coastal Southeast that are not high-incidence 

were classified as highly suitable by the I. scapularis consensus map, yielding a relatively 

high false positive rate.

4.6. B. burgdorferi consensus map and Lyme disease incidence

The AIC value of the logistic regression comparing the binary output from the B. 
burgdorferi consensus map with models set to 90% sensitivity against high-incidence 

counties was 1504 and the AUC value was 0.85. The AIC reflects a better fit model 

compared with the I. scapularis model (ΔAIC = 1454). Comparison of AUC values indicate 

Burtis et al. Page 10

Ticks Tick Borne Dis. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the B. burgdorferi consensus map better predicts high and low Lyme disease incidence 

counties than the I. scapularis consensus map. The median Lyme disease incidence of 

high-suitability counties according to the B. burgdorferi consensus map with models set to 

90% sensitivity [5.71 cases per 100,000 persons (IQR: 0.87–30.85)] was significantly higher 

than incidence in counties classified as low-suitability [0.15 cases per 100,000 persons (IQR: 

0.00–0.49)] (z = −32.72, p < 0.001) (Table 5). The B. burgdorferi consensus map shows 

better discrimination in Lyme disease incidence between high and low-suitability counties 

compared to the map based upon the I. scapularis dataset. The percent of high-incidence 

counties correctly classified as high- or low-incidence (high- or low-suitability, respectively) 

by the B. burgdorferi consensus map was 83.8%. The model classified 91.8% of high-

incidence counties as high-suitability (sensitivity), and 82.3% of low-incidence counties as 

low-suitability (specificity). Overall, 50.2% of counties classified as suitable reported a high 

incidence of Lyme disease (PPV = 50.2). The model yielded a low false negative rate, with 

1.34% of counties classified as low-suitability where high incidence of Lyme disease was 

reported (Table 6). The percent of high- and low-incidence counties correctly classified by 

the B. burgdorferi consensus map was 30.4% higher than the I. scapularis consensus map. 

The B. burgdorferi consensus map did not classify as many counties in the southeastern US 

as high-suitability compared to the I. scapularis map, yielding a lower false positive rate 

(Fig. 4).

4.7. Identifying leading edge counties

The B. burgdorferi consensus map more accurately aligns with high Lyme disease incidence 

counties than the I. scapularis map according to all three of our criteria: (1) better 

AUC and AIC values, (2) better discrimination in median incidence between high- and 

low-suitability counties, and (3) a higher percentage of high- and low-incidence counties 

correctly classified. Overall, when sensitivity is set to 90%, the B. burgdorferi consensus 

map identified 403 high-suitability counties for B. burgdorferi, but where Lyme disease 

incidence was not classified as high. These counties were primarily in the upper Midwest, 

specifically Ohio, Michigan, Indiana, Illinois, and Iowa. The median Lyme disease incidence 

in these counties was 0.87 cases per 100,000 persons (IQR: 0.36–2.48 cases per 100,000 

persons) (Table 7).

To identify counties where B. burgdorferi may be detected with enhanced vector 

surveillance, or where enzootic transmission and incidence may increase over time, we 

set the sensitivity of the B. burgdorferi modeling algorithms to 95% (defining moderate-

suitability). Median Lyme disease incidence in counties classified as moderate-suitability 

by the 95% sensitivity map was 3.37 cases per 100,000 persons (IQR: 0.66 – 23.60 

cases per 100,000 persons). The difference in Lyme disease incidence was 3.27 cases per 

100,000 persons between counties classified as moderately suitable and those classified as 

low-suitability. This map classifies an additional 186 leading edge counties as moderately 

suitable compared against the consensus map showing high-suitability set at 90% sensitivity. 

These counties were situated primarily in central portions of Iowa, Missouri, Kentucky and 

Tennessee, southern Virginia, northern North Carolina and coastal South Carolina (Fig. 4). 

The median Lyme disease incidence in these counties was 0.61 cases per 100,000 persons 

(IQR: 0.27–1.49 cases per 100,000 persons) (Table 7).
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5. Discussion

We developed habitat suitability models for both I. scapularis and B. burgdorferi-infected 

host-seeking I. scapularis. The resulting consensus maps were used to identify counties 

where established populations of I. scapularis or presence of B. burgdorfen-infected I. 
scapularis might be under-reported and tick surveillance efforts should be directed. These 

counties were situated primarily in the upper Midwest (Illinois, Iowa, Indiana, Michigan, 

and Ohio). We confirmed that the distribution of counties classified as highly suitable for B. 
burgdorferi-infected I. scapularis more accurately predicts the distribution of high-incidence 

Lyme disease counties than the distribution of highly suitable habitat for the tick without 

accounting for infection status. When the sensitivity of the component models of the B. 
burgdorferi map were increased to 95%, we identified moderately suitable counties situated 

primarily in central portions of Iowa, Kentucky and Tennessee, central and northeastern 

portions of Missouri, southern Virginia, northern North Carolina and coastal South Carolina. 

Lyme disease incidence in these moderately suitable counties was slightly lower than that 

in high-suitability counties, but still higher than incidence in counties with low-suitability. 

This indicates that environmental conditions are likely suitable for B. burgdorferi to persist 

in ticks, but we currently lack records of B. burgdorferi in host-seeking ticks. This highlights 

the counties where enhanced tick surveillance may verify or refute the accuracy of model 

predictions. Although pathogen presence appears to be a reasonable predictor of high-

incidence counties across the eastern US, more nuanced metrics, including tick infection 

prevalence and the density of host-seeking infected ticks may increase the accuracy of 

disease occurrence predictions, particularly in leading-edge counties.

Previous studies explored the predicted range of I. scapularis across the eastern US 

(Estrada-Peña, 2002; Brownstein et al., 2003; Hahn et al., 2016). Their predictions, and 

ours, demonstrate the dependence of model outcomes on the records upon which they are 

based, as well as the predictors used. Among previous modeling efforts, highly suitable 

habitat was consistently and accurately predicted in northeastern and southeastern states. 

Highly suitable tick habitat was also predicted along the Atlantic coast. The greatest 

uncertainty or disagreement among early suitability models was in the upper Midwest, 

primarily in Michigan, Indiana, Ohio and western and northern Minnesota where suitability 

was previously determined to be minimal (Estrada-Peña, 2002; Brownstein et al., 2003). 

Intensified surveillance and range expansion later showed I. scapularis was established in 

much of the upper Midwest, which was not initially considered suitable (Eisen et al., 2016). 

Our updated models and those of Hahn et al. (2016, 2017) that are based on updated 

surveillance records show a high degree of certainty in predicting highly suitable habitat 

for I. scapularis across the upper Midwest and expand the predicted range across Michigan, 

Ohio, Illinois, Iowa and Minnesota.

Surprisingly few studies have modeled the distribution of suitable habitat for the Lyme 

disease spirochetes. Data derived from the most comprehensive systematic tick surveillance 

effort in the US were used to estimate the density of host-seeking infected nymphs across 

the eastern US (Diuk-Wasser et al., 2012). However, in the ensuing 15 years since that 

study was completed, the range of both the tick and the pathogen have expanded (Eisen 

et al., 2016; Fleshman et al., 2021), necessitating an update. In addition, Diuk-Wasser 

Burtis et al. Page 12

Ticks Tick Borne Dis. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al. (2012) focused primarily on modeling the density of host-seeking infected nymphs 

(DIN). Nymphs are arguably the most epidemiologically significant metric (Mather et al., 

1996; Diuk-Wasser et al., 2012; Pepin et al., 2012), but focusing exclusively on this life 

stage likely under-estimates the presence of B. burgdorferi in ticks in the southeastern 

US where nymphs are seldom collected by drag sampling, but infected adults may bite 

humans (Stromdahl and Hickling, 2012; Diuk-Wasser et al., 2010; Arsnoe et al., 2015, 

2019). Indeed, compared with earlier models focused on DIN (Diuk-Wasser et al., 2012) 

our models predict suitable habitat for B. burgdorferi infected ticks moderately further 

south. Our predictions also extend further north in Michigan, and further into western New 

York and Pennsylvania, likely due to the expansion of our dataset as more data have been 

collected across the eastern US.

Comparing our I. scapularis and B. burgdorferi consensus maps, both dichotomized at 

a fixed 10% omission rate, we show that the predicted range of infected ticks is a 

more accurate predictor of high-incidence Lyme disease counties. This is expected, as 

the presence of B. burgdorferi-infected I. scapularis is generally assumed to be a better 

predictor of human cases than the presence of I. scapularis alone (Eisen et al., 2016; Eisen 

and Paddock, 2021). Our analysis quantifies the accuracy of these acarological metrics for 

predicting high-incidence Lyme disease counties and identifies counties where we expect to 

find B. burgdorferi-infected host-seeking ticks with differing levels of certainty. Field efforts 

directed at counties most likely to be highly suitable, even with more conservative sensitivity 

cut-offs, are most likely to yield infected ticks, and should be prioritized for field collection 

efforts.

Determining the presence of B. burgdorferi in host-seeking I. scapularis is generally easier 

and less costly compared with measuring DIN, yet shows good alignment with counties 

that are classified as high-incidence for Lyme disease. Given the limited number of DIN 

records, we were not able to directly compare the accuracy of DIN versus pathogen presence 

alone in predicting the geographic distribution of Lyme disease incidence. A previous 

study (Pepin et al., 2012) showed that across the eastern US, modeled estimates of DIN 

were significantly and positively correlated with reported Lyme disease incidence, with 

DIN explaining approximately 70% of the variation in reported disease incidence. The 

association was strongest in states and counties with high prevalence of B. burgdorferi 
infection in host-seeking nymphs and the metric was most accurate at discriminating 

high- versus low-incidence counties; it yielded mixed results when predicting county-scale 

incidence within high-incidence states. Based on our models, B. burgdorferi presence 

appears to be a similarly accurate predictor of counties reporting high Lyme disease 

incidence. This is likely because at coarse spatial scales (county, state, or region) the 

prevalence of B. burgdorferi infection in I. scapularis tends to be relatively stable over time 

in areas where the spirochete has become established (Prusinski et al., 2014; Lehane et al., 

2021; Foster et al., 2021). Specifically, nymphal and adult infection rates are commonly in 

the 20% and 50% range, respectively, in the Northeast, Mid-Atlantic and upper Midwest. 

By contrast, in the Southeast, host-seeking nymphs are seldomly collected and tested and 

adult infection prevalence is typically low, <5% (Diuk-Wasser et al., 2012; Lehane et al., 

2021; Porter et al., 2021). Our dataset was based on counties where infection prevalence 

is relatively high and infected I. scapularis were more likely to be detected given limited 
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surveillance effort. Tick surveillance effort is not evenly distributed across states or counties 

in the eastern US. Therefore, the predicted suitable range of B. burgdorferi based on our 

models is likely an under-representation of the true range of the pathogen, particularly 

under-representing suitable habitat in areas where infection prevalence is low. Given our low 

positive predictive value (i.e., high incidence was predicted in 50% of counties classified as 

highly suitable for B. burgdorferi-infected ticks), additional effort is needed to assess if these 

counties will emerge as high-incidence, or if higher level acarological metrics (e.g., densities 

of infected host-seeking ticks) are needed to accurately predict incidence in these areas.

Similar to previous models, the predictors included in our I. scapularis models were focused 

on temperature, precipitation and vegetative cover. The included variables were similar to or 

highly correlated with those described in Hahn et al. (2016). Their biological plausibility is 

explained therein. Beyond the records included in Hahn et al. (2016), our dataset contained 

an additional 159 counties with established I. scapularis populations obtained through the 

recently initiated CDC tick surveillance program. This expanded dataset results in much 

of the Northeast, upper Midwest, and coastal Southeast being classified as suitable for I. 
scapularis, with the interior Southeast being classified as suitable at higher sensitivities 

(90% and 95%). All predictors used in the I. scapularis models were also used by the B. 
burgdorferi models, except elevation. Two additional predictors were also included in the B. 
burgdorferi models, the mean temperature of the wettest (BIO8) and driest (BIO9) quarters. 

It is difficult to assess why these variables were significant predictors of B. burgdorferi 
presence, but we speculate they either correlate with host distributions or variability in host-

seeking phenology, each is assumed to affect prevalence in host-seeking ticks (Gatewood 

et al., 2009; Arsnoe et al., 2019; Ginsberg et al., 2021). Unfortunately, host distribution 

data are not available at the scale of our analyses. It is also worth noting that the scale 

of our analysis (i.e., county-level across the eastern US) likely affected the predictors that 

were selected, as interactions between ecosystem processes are partially dependent upon the 

scale at which data are organized (O’Neill et al., 1988, 1991; Newman et al., 2019). Hence, 

predictors used for finer scale modeling efforts may differ from those used by our models. 

Generally, hot and dry environments are not suitable for I. scapularis and the inclusion of 

these predictors in the B. burgdorferi models may be due to the fact that observations are 

clustered in the Northeast and upper Midwest, where precipitation is high, and temperatures 

are low. The exclusion of elevation as a predictor in the B. burgdorferi models may relate 

to there being observations of B. burgdorferi-infected I. scapularis in high and low elevation 

counties in the Northeast, as well as high elevation counties in West Virginia. This may have 

reduced the predictive power of elevation for B. burgdorferi-infected I. scapularis. Overall, 

fewer counties were classified as highly suitable for B. burgdorferi-infected I. scapularis 
than ticks when not accounting for infection status, and these were predominantly clustered 

in the upper midwestern and northeastern US.

Acarological risk data are expensive and time consuming to collect from the field, 

particularly at the national scale, but we have demonstrated that the collection of B. 
burgdorferi infection presence data for I. scapularis can accurately predict the geographic 

distribution of Lyme disease occurrence, particularly discriminating between low- and 

high-incidence counties. Because data were aggregated to the county scale, it is likely 

we are under-representing risk particularly in small suitable patches within counties along 
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the current leading edge. In some cases, it is also possible that entire counties may be 

classified as highly suitable, despite suitable habitat being limited to specific areas within 

the county. Additional analyses at sub-county scales are needed to determine the distribution 

of suitable habitat within counties classified as suitable. Furthermore, our analyses did not 

take spatial autocorrelation into account, hence it is not possible to determine whether our 

predictors are the underlying cause of the habitat being considered suitable, or this is an 

effect of a spreading population of I. scapularis. Models using spatial and habitat-based 

approaches should be compared, preferably using non-binary, sub-county data. To improve 

acarological risk estimates, tick surveillance efforts aimed at defining the distribution of B. 
burgdorferi-infected ticks should prioritize tick collection and testing in counties classified 

as suitable, but where infected ticks have not been reported. Counties classified as suitable 

at lower sensitivity thresholds (≤90%) are expected to be the highest yield for field efforts. 

Particularly in leading edge counties where B. burgdorferi has been detected but prevalence 

of infection has not been assessed, increased efforts to characterize infection rates may 

help to assess the likelihood that a tick-bite could result in transmission of B. burgdorferi. 
As national datasets continue to improve and grow, it is also important to determine what 

information is gained from the collection of more complex and costly metrics, particularly 

DIN, which accounts for both tick infection status and the likelihood of human-tick 

encounters.
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Fig. 1. 
The predicted suitability of counties for I. scapularis establishment based on three individual 

models (GLM / MARS / MAXENT) shown on the left. The large consensus maps to 

the right show counties to be highly suitable when ≥ 2 of the individual models predict 

high-suitability. Colored points on the large maps represent counties where I. scapularis is 

established. The maps are shown at three levels of sensitivity: 76% (sum of sensitivity and 

specificity maximized), 90 and 95%.
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Fig. 2. 
Counties predicted to be highly suitable for detecting B. burgdorferi-infected host-seeking I. 
scapularis based on three individual models (GLM/MARS / MAXENT), shown in maps on 

the left. The large consensus maps to the right show counties to be highly suitable when ≥2 

of the individual models predict high-suitability. Colored points on the large maps represent 

counties where B. burgdorferi was detected in field collected host-seeking I. scapularis. 

The maps are shown at three levels of sensitivity: 88% (sum of sensitivity and specificity 

maximized), 90, and 95%.
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Fig. 3. 
Response curves for the predictive variables included in the climate suitability models using 

the two data sets; I. scapularis and B. burgdorferi. The different line types represent the 

modeling algorithms, solid lines are GLM, dashed lines are MARS, and dotted lines are 

MAXENT. Not all parameters were used in all models.
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Fig. 4. 
Counties predicted to be suitable by the I. scapularis (top) and B. burgdorferi (bottom) 

consensus maps. High-suitability counties are based on models set to 90% sensitivity 

(orange), moderate-suitability counties with models set to 95% sensitivity (yellow). Low-

suitability counties are shown in white. Red dots indicate counties reporting high incidence 

of Lyme disease (≥10 cases per 100,000 persons) for at least three consecutive years 
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between 2000 and 2019 (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.).
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Table 1

The 24 climate and landscape predictors included in the initial parameter selection for models based upon both 

field datasets. The ‘mean min max’ column shows whether predictor maximums, minimums, or means were 

averaged at the county level.

Variable Name Min Mean Max Brief Description Data Source

Bio1 (°C) Mean Annual mean temperature Daymet

Bio2 (°C) Mean Mean diurnal range Daymet

Bio3 (%) Max Isothermality (BIO2/BIO7) (x100) Daymet

Bio4 (°C) Max Temperature seasonality (Std Dev x 100) Daymet

Bio5 (°C) Max Maximum temperature of the warmest month Daymet

Bio6 (°C) Min Minimum temperature of coldest month Daymet

Bio7 (°C) Max Annual range of temperature Daymet

Bio8 (°C) Mean Mean temperature of wettest quarter Daymet

Bio9 (°C) Mean Mean temperature of driest quarter Daymet

Bio10 (°C) Max Maximum temperature of warmest quarter Daymet

Bio11 (°C) Min Minimum temperature of coldest quarter Daymet

Bio12 (°C) Mean Annual precipitation Daymet

Bio13 (mm) Max Precipitation of wettest month Daymet

Bio14 (mm) Min Precipitation of driest month Daymet

Bio15 (mm) Max Precipitation seasonality (coefficient of variation) Daymet

Bio16 (mm) Max Precipitation during wettest quarter Daymet

Bio17 (mm) Min Precipitation during driest quarter Daymet

Bio18 (mm) Mean Precipitation during warmest quarter Daymet

Bio19 (mm) Mean Precipitation during coldest quarter Daymet

GDD10 DEC-FEB (days) Mean Average growing degree days at 10 °C from DEC - FEB Daymet

Monthly SWE NOV-APR (mm) Max Snow water equivalent between NOV - APR Daymet

Monthly VP MAR-JUN (kPa) Min Vapor pressure between MAR - JUN Daymet

Percent forest (%) NA Percent area covered by forest USGS

DEM (m) Mean Average elevation USGS

*
The spatial resolution of all data layers was 1 km × 1 km.

**
All Daymet climate variables were derived based on data from 1980 to 2015, forest cover was based on 2011 data and elevation was based on 

data collected in 2006.
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Table 2

Model selection criteria and performance metrics for the testing and training runs of each modeling algorithm 

used to construct the consensus models based upon the two acarological risk metrics; I. scapularis and B. 
burgdorferi-infected I. scapularis.

I. scapularis suitability models

Performance metric GLM MARS Maxent

Test Train Test Train Test Train

AUC 0.84 0.84 0.84 0.84 0.84 0.86

Percent correctly classified 75.3 75.4 75.2 75.5 75.6 76.1

Mean threshold 0.41 0.39 0.40 0.37 0.43 0.41

Sensitivity 68.9 73.7 71.5 75.5 72.7 78.5

Specificity 79.1 76.4 77.3 75.8 77.3 74.7

PPV 66.1 64.8 65.1 64.7 65.4 64.7

NPV 81.2 83.1 82.1 83.8 82.8 85.5

Correlation coefficient 0.57 0.58 0.57 0.59 0.55 0.57

Percent deviance explained 27.9 38.1 28.5 30.0 23.8 25.5

B. burgdorferi suitability models

Performance metric GLM MARS Maxent

Test Train Test Train Test Train

AUC 0.92 0.92 0.91 0.92 0.92 0.94

Percent correctly classified 83.4 80.4 78.7 81.4 83.0 84.5

Mean threshold 0.17 0.11 0.11 0.14 0.32 0.33

Sensitivity 86.0 92.5 90.0 89.8 85.1 89.1

Specificity 82.9 78.2 76.7 80.0 82.6 83.7

PPV 46.9 42.7 40.4 44.0 46.2 48.9

NPV 97.1 98.4 97.8 97.8 96.9 97.8

Correlation coefficient 0.62 0.63 0.61 0.63 0.60 0.64

Percent deviance explained 41.6 43.7 39.8 42.6 37.2 41.4

AUC: The AUC is a measure of model accuracy. A value of 1 indicates a ‘perfect’ model and values ≤ 0.5 indicate a poor distinction between 
counties classified as high- or low-suitability.

Percent Correctly Classified: (True Positive + True Negative) / (True Positive + True Negative + False Positive + False Negative).

Mean threshold: Probability threshold at which presence is with the sum of sensitivity and specificity maximized.

Sensitivity: True Positive / (True Positive + False Negative).

Specificity: True Negative / (True Negative + False Positive).

Positive Predictive Value (PPV) = True Positive / (True Positive / False Positive).

Negative Predictive Value (NPV) = True Negative / (False Negative + True Negative).

Correlation Coefficient: Linear relationship between the field data and model output.

Percent Deviance Explained: Goodness of fit statistic, similar to an R2 value.
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Table 3

Relative contributions of the climate predictors selected by the distribution modeling algorithms for the two 

acarological risk metrics; I. scapularis and B. burgdorferi-infected I. scapularis.

I. scapularis suitability models

Predictors Percent Deviance Explained Normalized contribution values (%)

GLM MARS Maxent

Mean diurnal temp. range (BIO2) 12.0 1.2 12.4 4.3

Max temp. warmest month (BIO5) 9.1 27.5 29.9 23.1

Precip. of coldest quarter (BIO19) 8.3 4.1 4.6 7.6

Precip. of warmest quarter (BIO18) 7.5 10.5 6.9 13.7

Percent forest cover 7.2 30.6 30.5 33.5

Elevation 5.3 26.1 15.7 17.8

B. burgdorferi suitability models

Predictors Percent Deviance Explained Normalized contribution values (%)

GLM MARS Maxent

Max temp. warmest month (BIO5) 33.1 32.5 23.4 31.3

Mean diurnal temp. range (BIO2) 22.7 11.5 8.3 7.3

Isothermality (BIO3) 17.7 1.5 0.2 2.1

Precip. of coldest quarter (BIO19) 13.1 14.2 16.4 6.3

Precip. of warmest quarter (BIO18) 10.5 – 2.2 2.1

Mean temp. of driest quarter (BIO9) 18.9 27.4 37.8 24.8

Percent forest cover 7.3 8.9 10.6 22.3

Mean temp. of wettest quarter (BIO8) 5.7 4.0 1.1 4.0
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Table 5

Median, 25%, and 75% quartiles of human Lyme disease incidence in counties classified as high- and low-

suitability by the consensus maps based upon the two acarological risk metrics; I. scapularis and B. 
burgdorferi-infected I. scapularis. The median and quartile incidences of counties where these consensus maps 

overlap are also shown. Consensus map coverage shown here with the sensitivity of the models set to 90%.

Consensus Layers Suitability Median LD Incidence 25% Quartile 75% Quartile Number Of Counties

I. scapularis consensus map High-Suitability 0.672 0.154 6.204 1686

Low-Suitability 0.062 0.000 0.391 1009

B. burgdorferi consensus map High-Suitability 5.706 0.867 30.852 803

Low-Suitability 0.149 0.000 0.485 1892

Regional Median - 0.338 0.000 1.644 2695 
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Table 6

Percent of high and low Lyme disease incidence counties correctly classified by the consensus maps predicting 

presence with the sensitivity of the models set to 90%. High-incidence counties are those with at least three 

consecutive years between 2000 and 2019 with ≥ 10 confirmed Lyme disease cases per 100,000 persons.

I. scapularis consensus map

Map classification Incidence classification

High Incidence Low Incidence % Correct

High-Suitability 433 1253 25.68 (PPV) 

Low-Suitability 3 1006 99.70 (NPV) 

% Correct 99.31 (sensitivity) 44.53 (specificity) 53.40 (PCC) 

B. burgdorferi consensus map

Map classification Incidence classification % Correct

High Incidence Low Incidence

High-Suitability 403 400 50.19 (PPV) 

Low-Suitability 36 1856 98.10 (NPV) 

% Correct 91.80 (sensitivity) 82.27 (specificity) 83.81 (PCC) 
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Table 7

The Lyme disease incidence within high-incidence Lyme disease counties, counties predicted to be highly 

suitable by the B. burgdorferi-infected host-seeking I. scapularis consensus map at 90% sensitivity, moderately 

suitable counties at 95% sensitivity, and low-suitability counties.

Median LD Incidence 25% Quartile 75% Quartile Number of Counties

High-Incidence Counties 29.59 14.01 55.73 436

High-Suitability 0.868 0.362 2.479 403

Moderate-Suitability 0.612 0.273 1.486 186

Low-Suitability 0.104 0.000 0.386 1670

Ticks Tick Borne Dis. Author manuscript; available in PMC 2023 October 23.


	Abstract
	Introduction
	Methods
	Field data for acarological risk metrics
	Human Lyme disease incidence data
	Climate and landscape predictors
	Acarological risk modeling
	Model thresholding and visualization of consensus maps
	Comparison of acarological risk models for classifying high incidence Lyme disease counties

	Results
	Variable selection and model performance

	Predictor response curves
	I. scapularis model response curves
	B. burgdorferi model response curves
	Consensus map performance based on comparisons with I. scapularis or B. burgdorferi presence records
	I. Scapularis model performance

	B. burgdorferi model performance
	Relationship between consensus maps and Lyme disease incidence
	I. Scapularis consensus map and Lyme disease incidence

	B. burgdorferi consensus map and Lyme disease incidence
	Identifying leading edge counties

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

